116 research outputs found

    Soliton excitation in waveguide arrays with an effective intermediate dimensionality

    Full text link
    We reveal and observe experimentally significant modifications undertaken by discrete solitons in waveguide lattices upon the continuous transformation of the lattice structure from one-dimensional to two-dimensional. Light evolution and soliton excitation in arrays with a gradually increasing number of rows are investigated, yielding solitons with an effective reduced dimensionality residing at the edge and in the bulk of the lattice.Comment: 14 pages, 5 figures, to appear in Physical Review Letter

    Nonlinearity-induced broadening of resonances in dynamically modulated couplers

    Full text link
    We report the observation of nonlinearity-induced broadening of resonances in dynamically modulated directional couplers. When the refractive index of the guiding channels in the coupler is harmonically modulated along the propagation direction and out-of-phase in two channels, coupling can be completely inhibited at resonant modulation frequencies. We observe that nonlinearity broadens such resonances and that localization can be achieved even in detuned systems at power levels well below those required in unmodulated couplers.Comment: 14 pages, 4 figures, to appear in Optics Letter

    Observation of two-dimensional surface solitons in anisotropic waveguide arrays

    Full text link
    We report on the experimental observation of two-dimensional surface waves localized at the edge or in the corner of femtosecond laser-written waveguide arrays in fused silica. Increasing the power of the input beam allows one to observe a clear transition from a linear diffraction pattern to localized nonlinear surface states, which can exist at the interface only above a certain power threshold.Comment: 13 pages, 4 figure

    Two-dimensional solitons at interfaces between binary superlattices and homogeneous lattices

    Full text link
    We report on the experimental observation of two-dimensional surface solitons residing at the interface between a homogeneous square lattice and a superlattice that consists of alternating "deep" and "shallow" waveguides. By exciting single waveguides in the first row of the superlattice, we show that solitons centered on deep sites require much lower powers than their respective counterparts centered on shallow sites. Despite the fact that the average refractive index of the superlattice waveguides is equal to the refractive index of the homogeneous lattice, the interface results in clearly asymmetric output patterns.Comment: 16 pages, 5 figures, to appear in Physical Review

    Observation of two-dimensional lattice interface solitons

    Full text link
    We report on the experimental observation of two-dimensional solitons at the interface between square and hexagonal waveguide arrays. In addition to the different symmetry of the lattices, the influence of a varying refractive index modulation depth is investigated. Such variation strongly affects the properties of surface solitons residing at different sides of the interface.Comment: 14 pages, 5 figures, to appear in Optics Letter

    Optics in Curved Space

    Get PDF
    We experimentally study the impact of intrinsic and extrinsic curvature of space on the evolution of light. We show that the topology of a surface matters for radii of curvature comparable with the wavelength, whereas for macroscopically curved surfaces only intrinsic curvature is relevant. On a surface with constant positive Gaussian curvature we observe periodic refocusing, self-imaging, and diffractionless propagation. In contrast, light spreads exponentially on surfaces with constant negative Gaussian curvature. For the first time we realized two beam interference in negatively curved space

    Observation of surface solitons in chirped waveguide arrays

    Full text link
    We report the observation of surface solitons in chirped semi-infinite waveguide arrays whose waveguides exhibit exponentially decreasing refractive indices. We show that the power threshold for surface wave formation decreases with an increase of the array chirp and that for sufficiently large chirp values linear surface modes are supported.Comment: 12 pages, 3 figures, to appear in Optics Letter

    Diffraction-managed solitons and nonlinear beam diffusion in modulated waveguide arrays

    Get PDF
    We present the first experimental observation of nonlinear beam diffusion and formation of diffraction-managed solitons in periodically-curved arrays of coupled optical waveguides created using femtosecond laser writing in silica glass, and titanium indiffusion in LiNbO3 crystals

    Wave localization at the boundary of disordered photonic lattices

    Full text link
    We report on the experimental observation of reduced light energy transport and disorder-induced localization close to a boundary of a truncated one-dimensional (1D) disordered photonic lattice. Our observations uncover that near the boundary a higher level of disorder is required to obtain similar localization than in the bulk.Comment: 13 pages, 5 figures, to appear in Optics Letter

    Surface solitons at interfaces of arrays with spatially-modulated nonlinearity

    Full text link
    We address the properties of two-dimensional surface solitons supported by the interface of a waveguide array whose nonlinearity is periodically modulated. When the nonlinearity strength reaches its minima at the points where the linear refractive index attains its maxima, we found that nonlinear surface waves exist and can be made stable only within a limited band of input energy flows, and for lattice depths exceeding a lower threshold.Comment: 13 pages, 3 figures, to appear in Optics Letter
    • …
    corecore